On its bottom, the sump contains an oil intake
On its bottom, the sump contains an oil intake covered by a mesh filter which is connected to an oil pump then to an oil filter outside the crankcase, from there it is diverted to the crankshaft main bearings and valve train. The crankcase contains at least one oil gallery (a conduit inside a crankcase wall) to which oil is introduced from the oil filter. The main bearings contain a groove through all or half its circumference; the oil enters to these grooves from channels connected to the oil gallery. The crankshaft has drillings which take oil from these grooves and deliver it to the big end bearings. All big end bearings are lubricated this way. A single main bearing may provide oil for 0, 1 or 2 big end bearings. A similar system may be used to lubricate the piston, its gudgeon pin and the small end of its connecting rod; in this system, the connecting rod big end has a groove around the crankshaft and a drilling connected to the groove which distributes oil from there to the bottom of the piston and from then to the cylinder.
Other systems are also used to lubricate the cylinder and piston. The connecting rod may have a nozzle to throw an oil jet to the cylinder and bottom of the piston. That nozzle is in movement relative to the cylinder it lubricates, but always pointed towards it or the corresponding piston.
Typically a forced lubrication systems have a lubricant flow higher than what is required to lubricate satisfactorily, in order to assist with cooling. Specifically, the lubricant system helps to move heat from the hot engine parts to the cooling liquid (in water-cooled engines) or fins (in air-cooled engines) which then transfer it to the environment. The lubricant must be designed to be chemically stable and maintain suitable viscosities within the temperature range it encounters in the engine.
Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine
Gasoline, diesel and gas - what to choose?
Each fuel has its supporters and detractors. Experts automotive industry can give many reasons for allowing the selection of a suitable fuel for our car. However, not always the cheapest solution turns out to be the best for driver or car owner. For example, if you want to consider the option of supplying gas in our car, we must know that it is necessary to install proper installation. This is connected with considerable costs, but on the other hand, avoids the higher fees in the future. However, a group of drivers who decide to change their system already installed in your car, however, is quite sparse.
Public benefits - using a car
In countries deprived from wide door-to-door public transport and with low density, such as Australia, the automobile plays an important role on the mobility of citizens. Public transport, by comparison, becomes increasingly uneconomic with lower population densities. Hence cars tend to dominate in rural and suburban environments with public economic gains.
The automobile industry, mainly in the beginning of the 20th century when the high motorization rates were not an issue, had also an important public role, which was the creation of jobs. In 1907, 45,000 cars were produced in The United States, but 28 years later in 1935 3,971,000 were produced, nearly 100 times as many. This increase in production required a large, new work force. In 1913 13,623 people worked at Ford Motor Company, but by 1915 18,028 people worked there.10 Bradford DeLong, author of The Roaring Twenties, tells us that, "Many more lined up outside the Ford factory for chances to work at what appeared to them to be (and, for those who did not mind the pace of the assembly line much, was) an incredible boondoggle of a job.10" There was a surge in the need for workers at big, new high-technology companies such as Ford. Employment largely increased.
Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use